Steve Kahn 14 Jan 2003

Monte Carlo Sample:
25000 events
6082 Neutral Current Events
18918 Charge Currents Events

Neutrino Event Spectrum for All, CC, NC events:

 $Y=E_{had}/E_{nu}$ for All, CC, NC events.

Y distribution for all neutrinos in energy bands:

Note that for $E_v>10$ GeV there is an accumulation at low Y. This is hard to imagine if The y-distribution is of the form $f(y)\sim a+b(1-y)^2$. These are supposed to be Monte Carlo events with no detector effects.

The figure shows the Y distribution for CC events in energy bands. This shows similar peaking at low Y.

This figure shows the CC sample with $E_v > 10$ GeV. The curves show fits to $F(y) = a + b(1-y)^2$ over the range 0 < y < 1 (not very good) and 0.2 < y < 1 (a bit better). $a = 56.4 \pm 1.3$ and $b = 43.8 \pm 4.4$ for the fit over $0.2 \rightarrow 1$ (red). Even this represents a substantial "sea" contribution with 24% of events are in $(1-y)^2$ part of distribution. Some of this could be anti-neutrinos. The peaking at low Y is hard to explain in any case.

The figure shows the Y distribution in energy bands for the NC sample. It shows a similar effect.

These plots are a result of *DST Dancing* without regards to the *quality of the DST*. Of the 25000 events: 24926 have a valid fast lepton or neutrino in the *particle #4 location*. (The leading lepton/neutrino is supposed to be in that location). The particle content in that location are

Code 11 : 16915 e-Code 12 : 5326 nue Code -11 : 1949 e+ Code -12 : 736 anue

Other: 74 nuclear garbage

CC sample 18918 events

There is an 11% anti-neutrino component to the beam in this sample. This can explain some of the $(1-y)^2$ contribution.